On adaptive HMM state estimation
نویسندگان
چکیده
In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems. These new schemes learn the set of N Markov chain states, and the a posteriori probability of being in each of the states at each time instant. They are designed to achieve the strengths, in terms of computational effort and convergence rates, of each of the two classes of earlier proposed adaptive HMM schemes without the weaknesses of each in these areas. The computational effort is of order N . Implementation aspects of the proposed algorithms are discussed, and simulation studies are presented to illustrate convergence rates in comparison to earlier proposed online schemes.
منابع مشابه
An Adaptive Hidden Markov Model Approach to Fm and M-ary Dpsk Demodulation in Noisy Fading Channels 1 List of Figures 1 Ekf/hmm Scheme for Adaptive Hmm
In this paper extended Kalman ltering (EKF) and hidden Markov model (HMM) signal processing, techniques are coupled in order to demodulate frequency modulated signals in noisy fading channels. The demodulation scheme presented is applied to both digital M-ary di erential phase shift keyed (MDPSK) and analog frequency modulated (FM) signals. Adaptive state-and-parameter estimation schemes are de...
متن کاملMaximum Likelihood Estimation of Trellis Encoder and Modulator Transition Utilizing HMM for Adaptive Channel Coding and Modulation Technique
In order to achieve adaptive channel coding and adaptive modulation, the main causes of degradation to system performance are the decoder selection error and modulator estimation error. The utilization of supplementary information, in an estimation system utilizing channel estimation results, blind modulation estimation, and blind encoder estimation using several decoders information and encode...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملBayesian adaptive learning of the parameters of hidden Markov model for speech recognition
In this paper a theoretical framework for Bayesian adaptive learning of discrete HMM and semi continuous one with Gaussian mixture state observation densities is presented Corre sponding to the well known Baum Welch and segmental k means algorithms respectively for HMM training formulations of MAP maximum a posteriori and segmental MAP estima tion of HMM parameters are developed Furthermore a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 46 شماره
صفحات -
تاریخ انتشار 1998